Math 241

Problem Set 10 solution manual

Exercise. A10.1

i $G=S_{4}$, then $|G|=4!=24=2^{3} .3$.
A sylow 2-subgroup of S_{4} is a subgroup of order 8 , so we can consider D_{4}.
A sylow 3 -subgroup of S_{4} is a subgroup of order 3 , so we can consider the subgroup generated by any 3 -cycle. eg: $<(123)>$.
ii $G=S_{5}$, then $|G|=5!=120=2^{3} .3 .5$.
A sylow 2-subgroup of S_{5} is a subgroup of order 8 . Notice that the elements of D_{4} when considered as pemutations in S_{5} will still form a subgroup whose order would be 8 .
A sylow 3 -subgroup of S_{5} is a subgroup of order 3 , so we can consider the subgroup generated by any 3 -cycle.
A sylow 5-subgroup of S_{5} is a subgroup of order 5 , so we can consider the subgroup generated by any 5 -cycle.
iii $G=\mathbb{Z}_{100} \times \mathbb{Z}_{30}$, then $|G|=3000=2^{3} .3 .5^{3}$
A sylow 3 -subgroup of $\mathbb{Z}_{100} \times \mathbb{Z}_{30}$ is a subgroup of order 3 , so we can consider the subgroup $<(0,10)>=\{(0,0),(0,10),(0,20)\}$.
A sylow 2-subgroup of $\mathbb{Z}_{100} \times \mathbb{Z}_{30}$ is a subgroup of order 8 , so we can consider the subgroup $<(25,0),(0,15)>=\{(0,0),(25,0),(50,0),(75,0),(0,15),(25,15),(50,15),(75,15)\}$.
A sylow 5 -subgroup of $\mathbb{Z}_{100} \times \mathbb{Z}_{30}$ is a subgroup of order 125 , so we can consider the subgroup $<(4,0),(0,6)>=\{(a, b) \mid a \equiv 0 \bmod (4)$, and $b \equiv 0 \bmod (6)\}$.
iv $G=G L_{2}\left(\mathbb{Z}_{7}\right)$, then $|G|=\left(7^{2}-1\right)\left(7^{2}-7\right)=2016=2^{5} .3^{2} .7$.
A sylow 7 -subgroup of G is a subgroup of order 7 , so we can consider the subgroup:
$\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 6 \\ 0 & 1\end{array}\right]\right\}=<\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]>$.
A sylow 3 -subgroup of G is a subgroup of order 9 , so we can consider the subgroup:
$\left\{\left.\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right] \right\rvert\, a, b \in\{1,2,4\}\right\}$.
A sylow 2-subgroup of G is a subgroup of order 2^{5}, so we can consider the subgroup:
So consider first the subgroup $H^{\prime}=<\left[\begin{array}{cc}2 & -4 \\ 4 & 2\end{array}\right]>, H^{\prime}$ is a subgroup of order 16. Then our
Sylow subgroup is $H=H^{\prime} \cup\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] H^{\prime}$

Exercise. A10.2

a- First we find the normalizer of T. So let $g=\left[\begin{array}{ll}i & j \\ k & l\end{array}\right] \in G L(2, \mathbb{R})$, for g to be in the normalizer of T then we must have $g \cdot\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right] \cdot g^{-1}=\left[\begin{array}{cc}a^{\prime} & 0 \\ 0 & b^{\prime}\end{array}\right] \Longrightarrow\left\{a^{\prime}, b^{\prime}\right\}=\{1,2\}$, reason is because the matrix $\left[\begin{array}{cc}a^{\prime} & 0 \\ 0 & b^{\prime}\end{array}\right]$ must have 1,2 as eigen values.
Then we have the following : either $g \cdot\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right] \cdot g^{-1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ which implies that g. $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right] g \Longrightarrow\left[\begin{array}{cc}i & 2 j \\ k & 2 l\end{array}\right]=\left[\begin{array}{cc}i & j \\ 2 k & 2 l\end{array}\right] \Longrightarrow j=k=0 \Longrightarrow g$ must be a diagonal matrix $\Longrightarrow g \in T$
or $g .\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right] \cdot g^{-1}=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ which implies that $g .\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right] g \Longrightarrow$ $\left[\begin{array}{cc}i & 2 j \\ k & 2 l\end{array}\right]=\left[\begin{array}{cc}2 i & 2 j \\ k & l\end{array}\right] \Longrightarrow i=l=0 \Longrightarrow g \in\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] T$
This show that $N(T) \subseteq T \cup\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] T$, Now it is easy to check that the right side is also contained in the normalizer of T.
Now we can deduce that index of T in $N(T)$ is 2 .
Now For the normalizer of U, we do the same, you can start by finding the elements g such that $g\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] g^{-1} \in U$, and you will get that g must be either in U or in $\left[\begin{array}{cc}1 & 0 \\ 0 & -l\end{array}\right] U$. FInally you can verify that $U \cup\left[\begin{array}{cc}1 & 0 \\ 0 & -l\end{array}\right] U \subset N(U)$ and hence $N(U)=U \cup\left[\begin{array}{cc}1 & 0 \\ 0 & -l\end{array}\right] U$. Then we can deduce that index of U in $N(U)$ is 2 .
b- Now to find the normalizer for T consider the matrix $A=\left[\begin{array}{ccccc}1 & 0 & \ldots & \ldots & 0 \\ 0 & 2 & 0 & \ldots & 0 \\ 0 & \ldots & \ddots & \ldots & 0 \\ 0 & \ldots & 0 & \ddots & 0 \\ 0 & \ldots & \ldots & 0 & n\end{array}\right]$,
$g \in N(T) \Longrightarrow g A g^{-1}=\left[\begin{array}{ccccc}a_{1} & 0 & \ldots & \ldots & 0 \\ 0 & a_{2} & 0 & \ldots & 0 \\ 0 & \ldots & \ddots & \ldots & 0 \\ 0 & \ldots & 0 & \ddots & 0 \\ 0 & \ldots & \ldots & 0 & a_{n}\end{array}\right]$ but this implies that $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=$ $\{1,2, \ldots, n\}$ in some order. So $\exists \pi \in S_{n}$ such that $a_{i}=\pi(i) \forall i \in\{1,2, \ldots, n\}$.

So $g A g^{-1}=\left[\begin{array}{ccccc}\pi(1) & 0 & \ldots & \ldots & 0 \\ 0 & \pi(2) & 0 & \ldots & 0 \\ 0 & \ldots & \ddots & \ldots & 0 \\ 0 & \ldots & 0 & \ddots & 0 \\ 0 & \ldots & \ldots & 0 & \pi(n)\end{array}\right]=P_{\pi}\left[\begin{array}{ccccc}1 & 0 & \ldots & \ldots & 0 \\ 0 & 2 & 0 & \ldots & 0 \\ 0 & \ldots & \ddots & \ldots & 0 \\ 0 & \ldots & 0 & \ddots & 0 \\ 0 & \ldots & \ldots & 0 & n\end{array}\right] \quad P_{\pi}^{-1}$ where P_{π} is a permutation matrix.
so we get that $g \in P_{\pi} \cdot \operatorname{Stab}(A)=P_{\pi} \cdot T$ for some $\pi \in S_{n}$.
Hence $N(T)=\underset{\pi \in S_{N}}{ } P_{\pi} \cdot T$, and then $N(T) / T=\left\{\bar{P}_{\pi} \mid \pi \in S_{n}\right\} \cong S_{n}$.
Section. 37
Exercise. 5
Let G be a group of order 96. G must contain a sylow 2 -subgroup of order 2^{5}. If G containes 1 sylow 2 -subgroup then we know that this subgroup is normal and hence G is not simple.

So consider that G containes more than one sylow 2-subgroups H and $K . H \cap K$ is a subgroup if H and of $K(H \neq K)$, by a counting argument we can see that the order of $H \cap K$ is 16 . Moreover, the normalizer of $H \cap K$ containes both subgroups H, and K, hence its order should be a divisor of 94 which is greater than 32 , hence $N(H \cap K)-G$, so $H \cap K$ is normal in G.

Section. 18
Exercise. 11
It is easy to see that this set is closed under addition and multicplication, for example $(a+b \sqrt{2})\left(a^{\prime}+\right.$ $\left.b^{\prime} \sqrt{2}\right)=a a^{\prime}+2 b b^{\prime}+\sqrt{2}\left(a b^{\prime}+b a^{\prime}\right)$ with $a a^{\prime}+2 b b^{\prime}, a b^{\prime}+b a^{\prime} \in \mathbb{Z}$. Moreover, $0=0+0 \sqrt{2}$ and $1=1+0 \sqrt{2}$ both belong to the set. Assotiativity and distributativity follows directly from the properties of the usual addition and multiplication in \mathbb{R}. So we have a ring. This ring is commutative since usual multiplication is commutative.

This ring is not a field since 2 is not a unit, for if it was then $\exists x \in R$ such that $2 x=1$, then $x=1 / 2$ contradiction $\left(1 / 2=a+b \sqrt{2}\right.$ with $a, b \in \mathbb{Z}$ then $\sqrt{2}=\frac{1 / 2-a}{b}$ which is impossibe.

Exercise. 12

Similarly as above it is easy to see that this set is a commutative ring. Now let $x_{1}=a+b \sqrt{2}$ be an non-zero element in the ring, notice that then $a^{2}-2 b^{2} \neq 0$ since $a, b \in \mathbb{Q}$, and then the element $x_{2}=\frac{a}{a^{2}-2 b^{2}}-\frac{b}{a^{2}-2 b^{2}} \sqrt{2}$ is an element in the ring with the property $x_{1} \cdot x_{2}=1$. Then our ring is a field.

Exercise. 15
The units in $\mathbb{Z} \times \mathbb{Z}$ are : $(1,1),(-1,1),(1,-1),(-1,-1)$.
Exercise. 20
a- The number of elements in $M_{2}\left(\mathbb{Z}_{2}\right)$ is 16 , since each entery of the matrix can be either 0 , or 1.
b- The invertible elements are: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$.
Exercise. 38
R is commutative $\Leftrightarrow a b=b a \forall a, b \in R \Leftrightarrow a b-b a=0 \forall a, b \in R \Leftrightarrow a^{2}-b^{2}+(a b-b a)=a^{2}-b^{2}$ $\Leftrightarrow(a-b)(a+b)=a^{2}-b^{2}$.

